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Abstract— This paper presents a novel approach to enable
multiple Unmanned Aerial Systems approaching a common
intersection to independently schedule their arrival time while
maintaining a safe separation. Aircraft merging at a common
intersection are grouped into a network and each aircraft
broadcasts its arrival time interval to the network. A dis-
tributed consensus algorithm elects a leader among the air-
craft approaching the intersection and helps synchronize the
information received by each aircraft. The consensus algorithm
ensures that each aircraft computes a schedule with the same
input information. The elected leader also dictates when a
schedule must be computed, which may be triggered when a
new aircraft joins the network. Preliminary results illustrating
the collaborative behavior of the vehicles are presented.

I. INTRODUCTION

Recent advances in sensor and vehicle technologies have
sparked an interest in the development of air transportation
systems for Urban Air Mobility. These systems satisfy on-
demand mobility needs in densely populated cities where
ground transportation is very time consuming. Some of these
transportation systems assume that the urban airspace will
be shared with small Unmanned Aerial Systems (sUAS) that
perform door to door package delivery services, for example.
Although these promising concepts are still in their inception,
their realization requires the understanding of the challenges
associated with air traffic management in the urban airspace.

Air traffic management applied to manned aviation (com-
mercial and general aviation) has been an active field of
research over the past decades. Operations en-route and in
terminal environments have been studied in depth and conse-
quently several algorithms to optimize traffic flow and min-
imize conflicts have been proposed. While air traffic opera-
tions, both manned and unmanned, in controlled airspace are
strictly regulated, sUAS operating in uncontrolled airspace
will require new and different traffic management methods.
In an urban environment, maintaining constant line of sight
or ground-based radar contact with these vehicles is impos-
sible due to obstruction from buildings. This work proposes
a multiagent coordination framework to regulate the flow
of air traffic in urban environments. More specifically, this
paper explores problems arising in merging, sequencing, and
coordination in an urban airspace.

Figure 1 illustrates an urban setting where several users of
the airspace utilize common airways to accomplish individual
missions. The main contribution of this work is a novel
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Fig. 1. UAS operation in an urban environment involving specific air routes.
These air routes facilitate traffic flow to accommodate various missions.

approach that allows multiple aerial vehicles to safely merge
at a common intersection. These vehicles coordinate passage
through the intersection by independently scheduling their
arrival times, while avoiding loss of separation. Vehicles
approaching the intersection use the Raft consensus algo-
rithm [1] to initiate a network. The vehicles elect a leader
using Raft’s voting mechanism. Each aircraft broadcasts an
arrival time interval to the leader. The leader ensures that
this information is synchronized across all vehicles in the
network by virtue of Raft’s log replication property. The
leader also monitors for imminent loss of separation at
intersections and dictates when a schedule must be computed
to prevent a conflict. Each aircraft computes its individual
arrival time on receiving the appropriate log entry from
the leader. The proposed approach can accommodate new
aircraft into the network. When necessary, the leader prompts
every aircraft in the network to reschedule arrival times.
Preliminary simulation results illustrating the collaborative
behavior of the vehicles are presented.

This paper is organized as follows. Section II discusses
related work. Section III provides background information
on the proposed scheduler and the Raft consensus algorithm.
Section IV and V outline the problem addressed by this paper
and provides a detailed description of the proposed solution.
Section VII illustrates results with use case examples. Section
VIII discusses various aspects of the proposed approach.
Finally, Section IX concludes and presents future work.

II. RELATED WORK

Collision avoidance for manned aircraft and detect and
avoid technologies for Unmanned Aerial Systems (UAS)
have led to the development of systems such as TCAS



[2], ACAS-X [3] and DAIDALUS [4]. These systems are
designed to provide resolution advisories to pilots. Mao et
al. [5] studied the stability and control of intersecting aircraft
flows in high altitude airspace.

With the advent of automotive Vehicle to Vehicle (V2V),
Vehicle to Infrastructure (V2I) technologies and an increas-
ing interest in self-driving vehicles, the problem of coordinat-
ing vehicles entering and leaving an intersection has gained
a lot of traction among automotive researchers. Various
techniques have been proposed to address the problem of
merging and spacing of vehicles at traffic intersections.
Scheduling based approaches to coordinate the arrival times
of vehicles approaching an intersection was used in [6]-[9].
Colombo et al. [10] used the schedule to construct a maximal
control invariant set that will guarantee safe passage of vehi-
cles through an intersection. Zhang et al. [11]-[13] explore
optimal control formulations where separation/collision con-
straints are represented as penalties in a cost function along
with various other constraints such as fuel consumption,
ride smoothness, etc. The approaches found in the literature
can be roughly classified into centralized vs. decentralized
approaches. The centralized methods rely on a central entity,
often located at the intersection, to enable coordination.
The decentralized approaches often decentralize the vehicle
control problem while still relying on a centralized server to
control sequencing/scheduling.

The techniques in [11], [13] could potentially be used to
control merging/spacing of UAS traffic flows in urban envi-
ronments. However, these techniques would require a dedi-
cated central agent for managing coordination. This would
lead to concerns such as building a suitable infrastructure to
host these central agents, along with the economic impact of
maintaining and operating this infrastructure. From a safety
standpoint a centralized solution suffers from having a single
point of failure. A distributed consensus algorithm may
be more resilient if appropriate mitigations for individual
failures are considered.

This work explores a framework that enables vehicles
to coordinate via a communication link and come to a
consensus on when each vehicle can safely pass through the
intersection. This approach avoids the need for a dedicated
centralized coordinator thus making it an attractive solution
for controlling merging and spacing of UAS traffic in an
urban environment.

III. BACKGROUND
A. Scheduling

Given a set of jobs and a set of resources needed to
complete the jobs, scheduling is the decision making process
in which jobs are assigned to resources at specific execution
times [14]. The scheduling problem or the job-shop problem
is represented by the tuple (a, 3,7), where the element «
describes the machine environment (e.g., total number of
machines), the element [ defines the jobs characteristics
(e.g., job duration, precedence constraints), and the element
~ defines the optimality criterion (e.g., makespan).

Without loss of generality, this paper focuses on the
scheduling problem defined by o = 1, 8 = (r;,d;,pi)
and v = maz;(t; + p; — d;). Here, the times r;, d;, p;
represent the earliest possible start time (release time), the
deadline, and the duration of the i job, respectively. The
time ¢; represents the scheduled start time of the i job.
The translation of determining safe passage through an
intersection to the above scheduling problem is described

in detail in Section V.

B. The Raft Consensus Algorithm

Raft [1] is a consensus algorithm that enables replicating
values across multiples nodes participating in a network.
The set of values to be replicated across different nodes are
collectively referred to as the log. There are two fundamen-
tal components to the Raft algorithm: leader election and
log replication. Raft achieves consensus by first electing a
node as a leader. The leader assumes the responsibility of
managing the replicated log. The leader accepts log entries
from clients and replicates them on other nodes and also
tells them when it is safe to make use of these values for
computation. The leader node first adds a new entry to its log
and data transfer always takes place from the leader to other
nodes in the network. The Raft algorithm can accommodate
leader failures (e.g., leader disconnects from the network) by
electing new leaders to manage the network.

Each node in the cluster can exist in one of three states:
follower, candidate, and leader. Nodes start as followers and
expect to receive regular heartbeats from a leader node. If a
follower does not receive a heartbeat within a time interval,
it transitions to a candidate and triggers an election process
governed by random timeouts. Followers vote for a candidate
and the candidate with the majority votes becomes the leader.
A new leader is elected when starting the cluster and when
an existing leader fails.

The Raft algorithm has the following important safety
property [1]: if any node has used a particular log entry
(e.g., to perform computations), then no other node may use
a different log entry for the same log index.

IV. PROBLEM STATEMENT AND APPROACH

Given a set of predefined intersecting paths and an ar-
bitrary number of UAS traversing these paths, the goal
is to enable all vehicles to orderly cross the intersection
avoiding conflicts and collisions. In a centralized system,
all agents approaching an intersection would communicate
to a dedicated central agent residing at the intersection. The
central agent coordinates the arrival/departure of each UAS
approaching the intersection. Instead of having a dedicated
coordinating agent, in this work, each UAS approaching the
intersection receives information about the crossing times of
all other UAS approaching the intersection and computes a
schedule such that its arrival at the intersection will ensure a
safe spacing distance from other UAS. One potential problem
with a naive implementation of the proposed approach is
that it is crucial to ensure that all agents agree on the
schedules they compute individually. In other words, each



agent must use the exact same input information to compute
the schedule. To resolve this issue, the Raft consensus
algorithm is used to enable synchronization of values across
all vehicles thus ensuring each vehicle uses the same set of
information to compute a schedule. Section V illustrates how
the scheduler constructs the optimal arrival times. Section VI
explains how the network of UASs use the Raft consensus
algorithm to ensure consistent schedule computation.

V. SCHEDULING ARRIVAL TIMES
A. Schedule Construction

Given a set of n UASs approaching an intersection, let
R;, D; denote the earliest and latest times, respectively, the
it" vehicle can approach the intersection. Let P denote the
minimum separation time that must be maintained between
vehicles crossing the intersection. The goal is to compute a
schedule T = (Ty,...,T,) € R™ for all i € {1,...,n},

such that
R, <T:<D;—-P (D
and thus, for all ¢ # j
T >T; =T, >T; + P. 2)

In scheduling terms, the above problem is of the form
a = 1,8 = (r; = Ri,di = Dij,p; = P),y = Lmaz :
maz;(T; + P; — D;). Without loss of generality, one can
consider the case where p; = 1 by normalizing the data as
follows:

R;

i = 5 3

"= P 3)
D,

di = —. 4

5 *

The schedule ¢ = (¢1,...,t,) is computed using Algorithm

1 [10] as described in the appendix and the crossing times

for the original data is obtained as:
T, = Pt;, i € {1,...,n}. (5)
B. Computing early arrival time

The earliest arrival time at the intersection is mathemati-
cally defined as:
R:= inf {t: z(t,u,x(t9)) = Xint}, (6)
ucl
where x(t, u, x(to)) represents the position of the vehicle at
time ¢ when starting from initial condition x(¢y) using the
control input function © € U. The position X;,; represents
the intersection. Given the current time t¢g, for a vehicle to
reach the intersection from its current positions at the earliest
time, it has to fly directly towards the intersection at its
maximum speed:

g — Ty

R=1ty+ @)
vmaaz

Here, v,,,4, represents the maximum speed of the vehicle,
x4 represents the distance to the intersection. The value xy
represents a predetermined distance the vehicle is allowed
to travel before actually computing a schedule. This value is
chosen to provide sufficient leeway to compensate for factors
such computational delays and network latency.

C. Computing late arrival time

Similar to the earliest arrival time calculation in Section V-
B, a simple solution for the late arrival time is to use
the slowest speed to fly directly towards the intersection.
However, it is always desirable to maximize the latest arrival
time at an intersection as this can be helpful in situations
where there are multiple converging paths at an intersection
and arrival times of vehicles are close together. The latest
arrival time at the intersection is mathematically defined as:

D := sup{t : x(t,u,z(to)) = Xint}- (8)
uel

In this work, for simplicity, the class of inputs U/ is restricted
to those that can yield trajectories of the form shown in
Figure 2. The trajectories are parametrized by x.; and z 3.
More specifically, each vehicle is allowed to make lateral
deviations no greater than X,,,, from the nominal flight
plan to maximize its late arrival time. Each vehicle is free
to choose a suitable z.;. Consequently, the late arrival time
can be analytically computed as

X
D =ty+ 2+
- ©)
\/'Igl + X?naac + \/(zd - xCl)Q + X?nax

Umin

Here, v represents the current speed of the vehicle and v,
which is assumed to be non-zero, represents the slowest
speed possible for the vehicle.

D. Computing a trajectory given an arrival time

Once an arrival time t, is computed by the scheduler, a
suitable control function wu(t),ty < t < t, that satisfies the
following condition must be computed:

x(ta,u, 2(to)) = Xine. (10)

In general, the above constraint can be solved using an
optimal control formulation [15]. Exploiting the class of
trajectories used to find the late arrival time, a simpler
solution can be obtained by searching for the cross track
deviation z.3 € [0, X4z and resolution speed v,es €
[Umins Vmaz] that satisfy the following equation:

T 22 + 22, + /(g — xe1)? + 12
?b_i_\/ cl c3 \U/( d 41) c3 _ (ta_tO)- (11)

Note that Formula (11) is underdetermined and admits mul-
tiple solutions. Assuming x.; is fixed a priori, one possible
solution is to find a v,., that minimizes the lateral deviation
.3 (See Algorithm 2).

VI. SYNCHRONIZING INFORMATION EXCHANGE USING
RAFT

A. Raft cluster initiation and membership changes

Each UAS approaching an intersection, by default, starts
in a neutral state. Each UAS scans to check if it receives
a heartbeat message from the Raft leader managing the
intersection. If a network of Raft servers is not already
available, the first UAS that is approaching the intersection
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and is closest to the intersection becomes a leader. If two
or more aircraft are the same distance away, a tie-breaking
technique, for example based on the aircraft identifiers, can
be considered. Once a leader is established, other aircraft can
join the network by requesting membership from the leader.
Addition and removal of nodes to the network is facilitated
by the Raft algorithm. Once a UAS safely passes through the
intersection, it drops off from the network and transitions to
a neutral state. If a leader drops off the network, a new leader
is elected among the existing nodes in the network by virtue
of the Raft algorithm.

B. Log replication

Figure 4 illustrates a typical log sequence. A DATA entry
consists of information about the Raft network (e.g., log
index, leader, term) and the arrival times of a specific
aircraft. Each vehicle computes its early, late, and current
arrival times and broadcasts this information to the leader
of the Raft network. The leader creates a log entry with
the received information and ensures that this entry is
consistently replicated in the logs of other follower nodes
in the network. The leader also constantly monitors the
received information to ensure each vehicle passing through
the intersection maintains a safe separation from each other.
If the leader detects an imminent conflict due to loss of
separation, it appends the COMPUTE entry to the log and
replicates it across other members. Once a follower receives
a compute entry, it starts computing a schedule. The leader
starts computing a schedule once the command entry is
successfully replicated across a majority of the nodes in the
network.

VII. RESULTS

A prototype of the proposed decentralized scheduling
approach was implemented and a simple scenario of three ve-
hicles approaching an intersection, as shown in Figure 3, was
simulated. The initial conditions of the three vehicles were
picked such that in the absence of any flight plan changes,
the three vehicles would be collocated at the intersection thus
causing a loss of separation among the three vehicles. Figure
5 illustrates the distance to the intersection of each vehicle
with the proposed framework. As these vehicles approach
the intersection, the three vehicles form a Raft cluster and
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Fig. 3. Schematic representation of data transfer between nodes in a Raft
network among UAS approaching an intersection.
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Fig. 4. Typical accumulation of log entries during a merging operation
between two vehicles

elect a leader (see Figure 6). The leader synchronizes all
their logs ensuring each vehicle has information about the
earliest, late, and current crossing times of other vehicles at
the intersection. The leader detects that the current crossing
times of all the vehicles result in a loss of separation and
appends a COMPUTE schedule command to each vehicles
log. On receiving the command, each vehicle computes
a schedule and executes a trajectory consistent with its
schedule as described in Section V-D. In this example, the
required minimum separation time at the intersection was
chosen to be 10s. As seen if Figure 5, each vehicle makes
adequate changes to its trajectory such that it crosses the
intersection while satisfying separation constraints.

VIII. DISCUSSION

This work assumes the existence of a vehicle to vehicle
(V2V) communication device aboard each UAS to establish
a network and exchange information. Currently available
technologies such as Dedicated Short Range Communication
(DSRC) and Cellular V2V technologies [16] are viable
candidates. Note that the proposed framework provides some
leeway x;, (see section V-B) for the vehicle before executing
the computed schedule. This provides a certain amount of
robustness against network latency and intermittent packet
dropouts. However, persistent network issues can degrade the
performance of the system. When a new member is added to
the Raft network at an intersection, the leader ensures that
the new member’s log catches up with the most updated log.
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This can result in follower logs being populated with stale
data that is no longer necessary for schedule computation.
This can be eliminated by using suitable log compaction
strategies [1]. The path deviations to accommodate solutions
is dependent on the geometry of the intersections. Extending
trajectories with vertical maneuvers can accommodate a
larger throughput at the intersection.

IX. CONCLUSION

This paper proposed a framework where merging and
spacing constraints between vehicles can be satisfied using
a combination of scheduling and distributed consensus. The
vehicles approaching an intersection form a Raft network and
elect a leader. The leader of the network helps synchronize
the same set of information across all vehicles in network.
Consequently, each vehicle computes the same solution,
enabling them to agree on the crossing times of each other.
A vehicle leaves the network once it has safely crossed
the intersection. New vehicles approaching the intersection
become new members of the network. If a leader drops out,
a new leader is elected by the Raft consensus algorithm

thus enabling existing members and new members to coordi-
nate safe passage through the intersection. In summary, the
proposed framework demonstrates the viability of coordinat-
ing safe passage through an intersection in a decentralized
manner. Future work will focus on analyzing the safety
properties of this framework. More specifically, identifying
initial conditions when a solution to the scheduling problem
may not exist and possible resolutions to deal with such
conditions and analysis on the robustness of the system to
network latency and communication failures.

APPENDIX

Algorithm 1 Scheduling algorithm (From [10])
Require: r = {rq,..

.,y } release times of jobs,

d={di,...,d,} deadlines of jobs
1: for all i € {i,...,n} do
2: FZ — (Z), C; < (Z)
3: end for
4: sort jobs in increasing 7;: (r1 < 79, ...,7y)
5. for i = n downto 1 do
6. for all j € {i,...,n} such that d; > d; do
7: if c; = () then
8: Cj dj -1
9: else
10: cj+cj—1
11: end if
12: while c; € F}; for some Fj, do
13: ¢; + inf(Fy)
14: end while

15:  end for
16: if i =1 or r;; < r; then

17: ¢ < min;(¢;)

18: if ¢ < r; then

19: return

20: end if

21: if c € [’I“i, 7"1'—1—1] then
22: F; [C — 1,’["7;]
23: end if

24:  end if

25: end for

26: t <0

27: T; =0,Vie {1,...,n}

28: for : =1 to n do

29:  Tpin < min{r;: job j has not been scheduled}
300t <+ max{t, Tmin}

31:  while ¢t ¢ F; for some j do

32: t < sup(Fj)

33:  end while

34:  j < {i: job i has least d; among jobs ready at ¢ }

35: Tyt
36: t+—t+1
37: end for

38: return 1’




Algorithm 2 Computing v,..s and x.3 given ¢,

Require: z.1,24,tq, 0

1:

AN

for z.3 € [0,0,,204, ..., Xmas) do
_ VR et/ (ma—wa)? a2,

UTES - ta

if viin < Vres < Vmae then
return v,.s, T3

end if

end for

[2

—

[3

[t

[4]

[8

[t}

[9

—

[10]

[11]

(12]
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